Implementation of a double scattering nozzle for Monte Carlo recalculation of proton plans with variable relative biological effectiveness.

Authors Fjæra LF, Indelicato DJ, Stokkevåg CH, Muren LP, Hsi WC, Ytre-Hauge KS
Source Phys Med Biol. 2020 Nov 19;65(22) Publicationdate 01 Jan 0001
Abstract

Abstract

A constant relative biological effectiveness (RBE) of 1.1 is currently used in clinical proton therapy. However, theRBEvaries with factors such as dose level, linear energy transfer (LET) and tissue type. MultipleRBEmodels have been developed to account for this biological variation. To enable recalculation of patients treated with double scattering (DS) proton therapy, includingLETand variableRBE, we implemented and commissioned a Monte Carlo (MC) model of a DS treatment nozzle. The main components from the IBA nozzle were implemented in the FLUKA MC code. We calibrated and verified the following entities to experimental measurements: range of pristine Bragg peaks (PBPs) and spread-out Bragg peaks (SOBPs), energy spread, lateral profiles, compensator range degradation, and absolute dose. We recalculated two patients with different field setups, comparing FLUKA vs. treatment planning system (TPS) dose, also obtainingLETand variableRBEdoses. We achieved good agreement between FLUKA and measurements. The range differences between FLUKA and measurements were for the PBPs within ±0.9 mm (83% ⩽ 0.5 mm), and for SOBPs ±1.6 mm (82% ⩽ 0.5 mm). The differences in modulation widths were below 5 mm (79% ⩽ 2 mm). The differences in the distal dose fall off (D80%-D20%) were below 0.5 mm for all PBPs and the lateral penumbras diverged from measurements by less than 1 mm. The mean dose difference (RBE= 1.1) in the target between the TPS and FLUKA were below 0.4% in a three-field plan and below 1.4% in a four-field plan. A dose increase of 9.9% and 7.2% occurred when using variableRBEfor the two patients, respectively. We presented a method to recalculate DS proton plans in the FLUKA MC code. The implementation was used to obtainLETand variableRBEdose and can be used for investigating variableRBEfor previously treated patients.